Saturday, 2 May 2015

And now for something completely different (almost)

There's a new edited book on Ranavirus. It is definitely worth reading if you are interested in amphibian diseases. You can acccess the book at Springer here: http://link.springer.com/book/10.1007/978-3-319-13755-1

Wednesday, 29 April 2015

The salamander-killing chytrid now in the UK

Read this story on BBC: http://www.bbc.com/earth/story/20150429-skin-eating-fungus-reaches-uk Currently, the salamander chytrid is only found in captive salamanders. It is extremely important that it does not get into the wild.

Monday, 27 April 2015

PLOS ONE: Widespread Occurrence of Bd in French Guiana, South America

PLOS ONE: Widespread Occurrence of Bd in French Guiana, South America

The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) is a purported agent of decline and extinction of many amphibian populations worldwide. Its occurrence remains poorly documented in many tropical regions, including the Guiana Shield, despite the area’s high amphibian diversity. We conducted a comprehensive assessment of Bd in French Guiana in order to (1) determine its geographical distribution, (2) test variation of Bd prevalence among species in French Guiana and compare it to earlier reported values in other South American anuran species (http://www.bd-maps.net; 123 species from 15 genera) to define sentinel species for future work, (3) track changes in prevalence through time and (4) determine if Bd presence had a negative effect on one selected species. We tested the presence of Bd in 14 species at 11 sites for a total of 1053 samples (306 in 2009 and 747 in 2012). At least one Bd-positive individual was found at eight out of 11 sites, suggesting a wide distribution of Bd in French Guiana. The pathogen was not uniformly distributed among the studied amphibian hosts, with Dendrobatidae species displaying the highest prevalence (12.4%) as compared to Bufonidae (2.6 %) and Hylidae (1.5%). In contrast to earlier reported values, we found highest prevalence for three Dendrobatidae species and two of them displayed an increase in Bd prevalence from 2009 to 2012. Those three species might be the sentinel species of choice for French Guiana. For Dendrobates tinctorius, of key conservation value in the Guiana Shield, smaller female individuals were more likely to be infected, suggesting either that frogs can outgrow their chytrid infections or that the disease induces developmental stress limiting growth. Generally, our study supports the idea that Bd is more widespread than previously thought and occurs at remote places in the lowland forest of the Guiana shield.

Thursday, 2 April 2015

There isn't a magic bacterial bullet

A new paper by Rachael E. Antwis and coauthors ("Amphibian symbiotic bacteria do not show universal ability to inhibit growth of the global pandemic lineage of Batrachochytrium dendrobatidis") shows that Bd mitigation using probiotics may be more complicated than currently thought. The study shows that "only a small proportion of candidate probiotics exhibit broad-spectrum inhibition across BdGPL isolates. Moreover, some bacterial genera show significantly greater inhibition than others, but overall, genus and species are not particularly reliable predictors of inhibitory capabilities."

Friday, 13 March 2015

Saturday, 28 February 2015

Killer frog fungus could actually help amphibians survive disease

Killer frog fungus could actually help amphibians survive disease



The loss of amphibian species across the world from chytridiomycosis, an infectious disease caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), has been described
as “the most spectacular loss of vertebrate biodiversity due to disease
in recorded history”. So it’s of grave concern that the pathogen has
been discovered in Madagascar, an incredibly biodiverse region
previously thought free of the fungus.



Madagascar has the 12th highest rate of amphibian species richness in
the world, with more than 400 species, 99% of which are indigenous to
the region. But this biodiversity hotspot is already under severe
pressure – a quarter of its species are under threat, according to the
latest Global Amphibian Assessment. It’s rightly feared that the arrival of Bd, as reported
in the journal Scientific Reports, could bring about mass amphibian
decline – and even extinctions – as has been seen elsewhere.






An scanning-electron micrograph image of a Chytrid fungus (Bd) spore.
Alex Hyatt/CSIRO, CC BY



Testing of the samples of the Bd fungus found in Madagascar reveals the strain is closely related to BdGPL,
the hyper-virulent lineage behind all the known outbreaks of the
chytrid fungus pathogen that have decimated amphibian populations.
However what’s interesting is that the rate of infection is extremely
low and there’s no clinical signs of chytridiomycosis: the frogs have
the fungus, but they haven’t developed the disease.



What could this mean?

This discovery presents us with a number of scenarios, which need further investigation.



Perhaps the comprehensive monitoring plan put in place by A Conservation Strategy for the Amphibians of Madagascar (ACSAM) has worked as planned, in that the presence of the Bd pathogen has been detected – for the first time in 2010 – before amphibian declines have occurred.



Perhaps the strain of Bd detected in Madagascar is not a
virulent kind that poses a serious threat to amphibians. This was seen
with the introduction of the BdCape fungus lineage into Mallorca, where it had little effect on the population of Alytes muletensis toads there.



It’s possible that the Bd detected in Madagascar has been
present on the island for a long time, but undetected. It may be an
endemic, non-virulent lineage as seen in Brazil and Asia, where certain
lineages endemic to the regions appear to have evolved alongside the
native amphibians.



Or perhaps there is an endemic, previously undetected chytrid fungus on the island, related or not to Bd, which could be acting as a buffer for local amphibians against the invasion of BdGPL – acting, in effect, as a natural vaccine.



Alternatively, Malagasy amphibians may have developed some intrinsic resistance to Bd,
for example through protective bacteria in their skin. This could
explain the low infection rates and the ambiguous test results reported
in the paper showing that some Bd-positive samples did not conform to
any known lineage of the fungus. Although rare, resistance to BdGPL is not unprecedented – this has been seen and documented in Brazil.






The last known surviving Rabb’s Fringe-limbed Treefrog, a species ravaged by the Bd fungus.
briangratwicke, CC BY



A potential threat or a potential benefit

The first scenario would be a disaster – and should be a priority. If
this turns out to be the case, the survival of Malagasy amphibians
could depend on the conservation and scientific groups involved in ACSAM
managing to restrict the spread of the disease. Tackling invasive
species such as the Asian Toad that might spread the disease and
ensuring tourists and researchers stick to strict hygiene protocols
would be necessary. Perhaps even more drastic conservation measures,
such as capturing animals from particularly vulnerable species for
raising in captivity.



On the other hand, the fourth scenario presents an intriguing
possibility: if it’s the case that Malagasy amphibians are resisting a
fungal invasion, discovering how this works could provide crucial
information to help save amphibians elsewhere from the disease.



The research on the amphibian skin microbiome, for example, and its
role in the creature’s immune system is producing some exciting results.
It’s also apparent that the diversity of the Chytrid fungus species as a
whole, and in particular of Bd, has not been appreciated. It’s
possible there are many types of chytrid fungus associated with
amphibians that we’re not yet aware of which provide some protection
against BdGPL.



So without a doubt, this report will sound warning bells loud and clear for conservationists, and Bd’s
appearance in Madagascar could still result in a huge loss of
amphibians. However, the lack of chytridiomycosis symptoms also suggest
there’s something special in Madagascar that could yield a breakthrough
in how the disease spreads – something that may not only benefit
Malagasy amphibians, but those throughout the world.